Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Mycol Med ; 34(1): 101464, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367460

RESUMO

INTRODUCTION: The cases of dermatophytosis are increasing and they are associated with a higher number of therapeutic failures leading the doctor to prescribe combinations of antifungals as therapy. The objective was to evaluate the interaction of terbinafine and ciclopirox, the most commonly antifungals used in the clinic, in dermatophyte isolates. METHODOLOGY: The minimum inhibitory concentrations (MIC) of ciclopirox and terbinafine were determined by the broth microdilution method according CLSI and the checkerboard assay was used to evaluate the interaction between the antifungal agents. RESULTS: For terbinafine the mic50 was 0.125 ug/mL and mic90 was 0.250 ug/mL. For ciclopirox the values were 2.0 ug/mL for mic50 and 4.0 ug/mL for mic90. No synergistic interaction was observed for the dermatophyte isolates tested. CONCLUSION: These results suggest that the use of terbinafine in combination with ciclopirox, which is widely used in the clinic, may not be a good choice for the treatment of onychomycosis.


Assuntos
Antifúngicos , Onicomicose , Humanos , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Ciclopirox/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Naftalenos/farmacologia , Naftalenos/uso terapêutico , Onicomicose/tratamento farmacológico , Onicomicose/microbiologia , Testes de Sensibilidade Microbiana
3.
AAPS PharmSciTech ; 24(7): 198, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783861

RESUMO

Terbinafine hydrochloride is a synthetic allylamine whose mechanism of action consists of inhibiting the enzyme squalene epoxidase that participates in the first stage of ergosterol synthesis, interfering with fungal membrane function. Ozonated oils are used for topical application of ozone, producing reactive oxygen species that cause cellular damage in microorganisms, therefore being an alternative treatment for acute and chronic skin infections. This study aimed to develop and characterize Eudragit® RS100 nanocapsules, obtained by interfacial deposition of preformed polymer method, containing 0.5% terbinafine hydrochloride and 5% ozonated sunflower seed oil as a potential treatment against dermatophytes. The polymeric nanocapsules were characterized regarding particle size, zeta potential, pH, drug content, encapsulation efficiency, and stability. The in vitro drug release, in vitro skin permeation, and in vitro antifungal activity were also evaluated. The particle size was around 150 nm with a narrow size distribution, the zeta potential was around + 6 mV, and the pH was 2.2. The drug content was close to 95% with an encapsulation efficiency of 53%. The nanocapsules were capable to control the drug release and the skin permeation. The in vitro susceptibility test showed greater antifungal activity for the developed nanocapsules, against all dermatophyte strains tested, compared to the drug solution. Therefore, the polymeric nanocapsules suspension containing terbinafine hydrochloride and ozonated oil can be considered a potential high-efficacy candidate for the treatment of dermatophytosis, with a possible reduction in the drug dose and frequency of applications. Studies to evaluate safety and efficacy in vivo still need to be performed.


Assuntos
Arthrodermataceae , Nanocápsulas , Terbinafina , Antifúngicos , Nanocápsulas/química , Óleos
4.
Dev Cell ; 58(19): 1967-1982.e8, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37734383

RESUMO

Neuroblastoma is the most common extracranial solid tumor in infants, arising from developmentally stalled neural crest-derived cells. Driving tumor differentiation is a promising therapeutic approach for this devastating disease. Here, we show that the CDK4/6 inhibitor palbociclib not only inhibits proliferation but induces extensive neuronal differentiation of adrenergic neuroblastoma cells. Palbociclib-mediated differentiation is manifested by extensive phenotypic and transcriptional changes accompanied by the establishment of an epigenetic program driving expression of mature neuronal features. In vivo palbociclib significantly inhibits tumor growth in mouse neuroblastoma models. Furthermore, dual treatment with retinoic acid resets the oncogenic adrenergic core regulatory circuit of neuroblastoma cells, further suppresses proliferation, and can enhance differentiation, altering gene expression in ways that significantly correlate with improved patient survival. We therefore identify palbociclib as a therapeutic approach to dramatically enhance neuroblastoma differentiation efficacy that could be used in combination with retinoic acid to improve patient outcomes.


Assuntos
Neuroblastoma , Piperazinas , Piridinas , Tretinoína , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Diferenciação Celular , Tretinoína/farmacologia , Neuroblastoma/tratamento farmacológico , Adrenérgicos/uso terapêutico
5.
Mycoses ; 66(10): 906-910, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37434424

RESUMO

BACKGROUND: Dermatophytosis is one of the most common fungal infections worldwide. The distribution of dermatophytes varies across continents, but the genera Trichophyton and Microsporum have emerged as the main isolated agents in humans and animals. OBJECTIVES: To validate Drosophila melanogaster flies as a fast and feasible model to study dermatophytic infections. METHODS: Wild-type (WT) and Toll-deficient D. melanogaster flies were infected by Trichophyton rubrum, T. mentagrophytes, Microsporum canis and Nannizzia gypsea by pricking with a needle previously dipped in inoculum concentrations ranging from 103 to 108 colony-forming units/mL. Establishment of infection was confirmed by survival curves, histopathological analysis and fungal burden. Thereafter, flies were treated with terbinafine, itraconazole and clioquinol. RESULTS: WT flies were predominantly resistant to the infection, whereas Toll-deficient flies succumbed to the four dermatophyte genera tested. The antifungal drugs protected flies from the infection, except for N. gypsea whose survival curves did not differ from the untreated group. CONCLUSIONS: This pilot study confirms that D. melanogaster is a suitable model to study the virulence and antifungal drug efficacy in dermatophyte species.


Assuntos
Arthrodermataceae , Tinha , Humanos , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Drosophila melanogaster , Projetos Piloto , Itraconazol , Trichophyton , Tinha/tratamento farmacológico , Tinha/microbiologia
6.
J Mycol Med ; 33(3): 101411, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37413753

RESUMO

The increasing resistance to antifungal agents associated with toxicity and interactions turns therapeutic management of fungal infections difficult. This scenario emphasizes the importance of drug repositioning, such as nitroxoline - a urinary antibacterial agent that has shown potential antifungal activity. The aims of this study were to discover the possible therapeutic targets of nitroxoline using an in silico approach, and to determine the in vitro antifungal activity of the drug against the fungal cell wall and cytoplasmic membrane. We explored the biological activity of nitroxoline using PASS, SwissTargetPrediction and Cortellis Drug Discovery Intelligence web tools. After confirmation, the molecule was designed and optimized in HyperChem software. GOLD 2020.1 software was used to predict the interactions between the drug and the target proteins. In vitro investigation evaluated the effect of nitroxoline on the fungal cell wall through sorbitol protection assay. Ergosterol binding assay was carried out to assess the effect of the drug on the cytoplasmic membrane. In silico investigation revealed biological activity with alkane 1-monooxygenase and methionine aminopeptidase enzymes, showing nine and five interactions in the molecular docking, respectively. In vitro results exhibited no effect on the fungal cell wall or cytoplasmic membrane. Finally, nitroxoline has potential as an antifungal agent due to the interaction with alkane 1-monooxygenase and methionine aminopeptidase enzymes, which are not the main human therapeutic targets. These results have potentially revealed a new biological target for the treatment of fungal infections. We also consider that further studies are required to confirm the biological activity of nitroxoline on fungal cells, mainly the confirmation of the alkB gene.


Assuntos
Aminopeptidases , Antifúngicos , Humanos , Antifúngicos/farmacologia , Simulação de Acoplamento Molecular , Citocromo P-450 CYP4A , Metionina , Fungos
7.
Clin Cancer Res ; 29(7): 1317-1331, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36602782

RESUMO

PURPOSE: ALK-activating mutations are identified in approximately 10% of newly diagnosed neuroblastomas and ALK amplifications in a further 1%-2% of cases. Lorlatinib, a third-generation anaplastic lymphoma kinase (ALK) inhibitor, will soon be given alongside induction chemotherapy for children with ALK-aberrant neuroblastoma. However, resistance to single-agent treatment has been reported and therapies that improve the response duration are urgently required. We studied the preclinical combination of lorlatinib with chemotherapy, or with the MDM2 inhibitor, idasanutlin, as recent data have suggested that ALK inhibitor resistance can be overcome through activation of the p53-MDM2 pathway. EXPERIMENTAL DESIGN: We compared different ALK inhibitors in preclinical models prior to evaluating lorlatinib in combination with chemotherapy or idasanutlin. We developed a triple chemotherapy (CAV: cyclophosphamide, doxorubicin, and vincristine) in vivo dosing schedule and applied this to both neuroblastoma genetically engineered mouse models (GEMM) and patient-derived xenografts (PDX). RESULTS: Lorlatinib in combination with chemotherapy was synergistic in immunocompetent neuroblastoma GEMM. Significant growth inhibition in response to lorlatinib was only observed in the ALK-amplified PDX model with high ALK expression. In this PDX, lorlatinib combined with idasanutlin resulted in complete tumor regression and significantly delayed tumor regrowth. CONCLUSIONS: In our preclinical neuroblastoma models, high ALK expression was associated with lorlatinib response alone or in combination with either chemotherapy or idasanutlin. The synergy between MDM2 and ALK inhibition warrants further evaluation of this combination as a potential clinical approach for children with neuroblastoma.


Assuntos
Neoplasias Pulmonares , Neuroblastoma , Camundongos , Animais , Humanos , Quinase do Linfoma Anaplásico/genética , Aminopiridinas/uso terapêutico , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/uso terapêutico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico
8.
Nat Commun ; 14(1): 469, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709329

RESUMO

The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood. Here, we comprehensively investigated genome-wide chromatin changes associated with transcriptional reprogramming response to heat stress in tomato. Our data show that heat stress induces rapid changes in chromatin architecture, leading to the transient formation of promoter-enhancer contacts, likely driving the expression of heat-stress responsive genes. Furthermore, we demonstrate that chromatin spatial reorganization requires HSFA1a, a transcription factor (TF) essential for heat stress tolerance in tomato. In light of our findings, we propose that TFs play a key role in controlling dynamic transcriptional responses through 3D reconfiguration of promoter-enhancer contacts.


Assuntos
Resposta ao Choque Térmico , Solanum lycopersicum , Resposta ao Choque Térmico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica , Cromatina/genética , Solanum lycopersicum/genética
9.
Mol Cancer ; 21(1): 126, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689207

RESUMO

BACKGROUND: Development of resistance to targeted therapies has tempered initial optimism that precision oncology would improve poor outcomes for cancer patients. Resistance mechanisms, however, can also confer new resistance-specific vulnerabilities, termed collateral sensitivities. Here we investigated anaplastic lymphoma kinase (ALK) inhibitor resistance in neuroblastoma, a childhood cancer frequently affected by activating ALK alterations. METHODS: Genome-wide forward genetic CRISPR-Cas9 based screens were performed to identify genes associated with ALK inhibitor resistance in neuroblastoma cell lines. Furthermore, the neuroblastoma cell line NBLW-R was rendered resistant by continuous exposure to ALK inhibitors. Genes identified to be associated with ALK inhibitor resistance were further investigated by generating suitable cell line models. In addition, tumor and liquid biopsy samples of four patients with ALK-mutated neuroblastomas before ALK inhibitor treatment and during tumor progression under treatment were genomically profiled. RESULTS: Both genome-wide CRISPR-Cas9-based screens and preclinical spontaneous ALKi resistance models identified NF1 loss and activating NRASQ61K mutations to confer resistance to chemically diverse ALKi. Moreover, human neuroblastomas recurrently developed de novo loss of NF1 and activating RAS mutations after ALKi treatment, leading to therapy resistance. Pathway-specific perturbations confirmed that NF1 loss and activating RAS mutations lead to RAS-MAPK signaling even in the presence of ALKi. Intriguingly, NF1 loss rendered neuroblastoma cells hypersensitive to MEK inhibition. CONCLUSIONS: Our results provide a clinically relevant mechanistic model of ALKi resistance in neuroblastoma and highlight new clinically actionable collateral sensitivities in resistant cells.


Assuntos
Neuroblastoma , Medicina de Precisão , Quinase do Linfoma Anaplásico/genética , Linhagem Celular Tumoral , Criança , Humanos , Mutação , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais
10.
Nat Commun ; 13(1): 1380, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296644

RESUMO

Neuroblastoma is the most common paediatric solid tumour and prognosis remains poor for high-risk cases despite the use of multimodal treatment. Analysis of public drug sensitivity data showed neuroblastoma lines to be sensitive to indisulam, a molecular glue that selectively targets RNA splicing factor RBM39 for proteosomal degradation via DCAF15-E3-ubiquitin ligase. In neuroblastoma models, indisulam induces rapid loss of RBM39, accumulation of splicing errors and growth inhibition in a DCAF15-dependent manner. Integrative analysis of RNAseq and proteomics data highlight a distinct disruption to cell cycle and metabolism. Metabolic profiling demonstrates metabolome perturbations and mitochondrial dysfunction resulting from indisulam. Complete tumour regression without relapse was observed in both xenograft and the Th-MYCN transgenic model of neuroblastoma after indisulam treatment, with RBM39 loss, RNA splicing and metabolic changes confirmed in vivo. Our data show that dual-targeting of metabolism and RNA splicing with anticancer indisulam is a promising therapeutic approach for high-risk neuroblastoma.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neuroblastoma , Linhagem Celular Tumoral , Criança , Humanos , Proteína Proto-Oncogênica N-Myc , Recidiva Local de Neoplasia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Splicing de RNA/genética , Sulfonamidas
11.
Curr Microbiol ; 79(2): 62, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34994875

RESUMO

Fusariosis affects cereal grain crops worldwide and is responsible for devastating crops, reducing grain quality and yield, and producing strong mycotoxins. Benzimidazoles and triazoles were recommended to combat fusariosis; however, there were reports of resistance, making it necessary to reflect on the reasons for this occurrence. The purpose of this review was to evaluate the fusariosis resistance to the main agricultural fungicides, to observe whether this resistance can cause changes in the production of mycotoxins, and to verify the influence of resistance on the cereal grain production chain. Scientific articles were selected from the ScienceDirect, Scopus, and Pubmed databases, published at maximum 10 years ago and covering the main fungicide classes that combat phytopathogenesis and mycotoxin production. A high occurrence of resistance to carbendazim was found, while few reports of resistance to triazoles are available. The effectiveness of strobilurins is doubtful, due to an increase of mycotoxins linked to it. It is possible to conclude that the large-scale use of fungicides can select resistant strains that will contribute to an increase in the production of mycotoxins and harm sectors of the world economy, not only the agriculture, but also sanitation and foreign trade.


Assuntos
Fungicidas Industriais , Fusarium , Micotoxinas , Grão Comestível , Fungicidas Industriais/farmacologia , Doenças das Plantas
12.
Nat Chem Biol ; 17(9): 954-963, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33972797

RESUMO

The peptidyl-prolyl isomerase, Pin1, is exploited in cancer to activate oncogenes and inactivate tumor suppressors. However, despite considerable efforts, Pin1 has remained an elusive drug target. Here, we screened an electrophilic fragment library to identify covalent inhibitors targeting Pin1's active site Cys113, leading to the development of Sulfopin, a nanomolar Pin1 inhibitor. Sulfopin is highly selective, as validated by two independent chemoproteomics methods, achieves potent cellular and in vivo target engagement and phenocopies Pin1 genetic knockout. Pin1 inhibition had only a modest effect on cancer cell line viability. Nevertheless, Sulfopin induced downregulation of c-Myc target genes, reduced tumor progression and conferred survival benefit in murine and zebrafish models of MYCN-driven neuroblastoma, and in a murine model of pancreatic cancer. Our results demonstrate that Sulfopin is a chemical probe suitable for assessment of Pin1-dependent pharmacology in cells and in vivo, and that Pin1 warrants further investigation as a potential cancer drug target.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
Mycoses ; 64(7): 727-733, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33772895

RESUMO

Dermatophytosis is a superficial fungal infection that affects humans and is very common in small animals. The treatment using the most commonly used antifungals is failing, and new therapeutic alternatives are required to combat the resistance of these fungal infections. Previous studies by the group have shown that clioquinol is an important therapeutic alternative in the treatment of dermatophytosis. The object was to conduct studies of antidermatophytic activity and the irritant potential from the double and triple combinations of clioquinol, terbinafine and ciclopirox in ex vivo and in vivo alternative models. To evaluate the irritant potential of antifungal combinations, the alternative HET-CAM method (chicken egg test chorioallantoic membrane) was used. Ex vivo models were used to assess the effectiveness of antifungal combinations, using pig hooves and veterinary fur. Any possible tissue damage was to assess through in histopathology of swine ears. HET-CAM results showed that all combinations can be classified as non-irritating, corroborated by the results of the histopathological evaluation of the pig's ear skin. Only the double combinations managed to remove 100% of the colony-forming units (CFU) formed on the pig's hooves. The clioquinol + terbinafine combination and the triple combination were more effective than clioquinol + ciclopirox in eradicating the preformed biofilm in fur of veterinary origin. These results show the potential of formulations of clioquinol in combination with antifungals for use in humans and in the veterinary field to combat dermatophytosis, as an important alternative therapy, for use in the near future.


Assuntos
Antifúngicos , Dermatomicoses , Modelos Animais de Doenças , Animais , Antifúngicos/uso terapêutico , Antifúngicos/toxicidade , Ciclopirox/uso terapêutico , Ciclopirox/toxicidade , Clioquinol/uso terapêutico , Clioquinol/toxicidade , Dermatomicoses/tratamento farmacológico , Dermatomicoses/veterinária , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Suínos , Terbinafina/uso terapêutico , Terbinafina/toxicidade
14.
Med Mycol ; 59(1): 58-66, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32407486

RESUMO

The number of deaths due to systemic fungal infections is increasing alarmingly, which is aggravated by the limitations of traditional treatments and multidrug resistance. Therefore, the research and development of new therapeutic options against pathogenic fungi is an urgent need. To evaluate the fungicidal activity of a synthetic compound, 1,3-bis-(3,4-dichlorophenoxy)propan-2-aminium chloride (2j), through time-kill studies and pharmacokinetics/pharmacodynamics (PK/PD) modeling. The protective effect of the compound was also evaluated using the Drosophila melanogaster minihost model of candidiasis. Mathematical modeling of time-kill data of compound 2j was performed to obtain PD characteristics. Additionally, Toll-deficient D. melanogaster flies were infected with a Candida albicans strain and treated with 2j. We observed that compound 2j demonstrated a time- and dose-dependent fungicidal effect against Candida spp. and dermatophytes, even at low concentrations, and rapidly achieved kill rates reaching the maximum effect in less than one hour. The efficacy of the compound against systemic candidiasis in D. melanogaster flies was comparable to that achieved by fluconazole. These results support the potential of compound 2j as a systemic antifungal agent candidate and serve as a starting point for further studies involving mammalian animal models.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/veterinária , Drosophila melanogaster/efeitos dos fármacos , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana/veterinária , Animais , Modelos Animais de Doenças , Humanos , Concentração Inibidora 50
15.
EBioMedicine ; 59: 102971, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32846370

RESUMO

BACKGROUND: In neuroblastoma, genetic alterations in ATRX, define a distinct poor outcome patient subgroup. Despite the need for new therapies, there is a lack of available models and a dearth of pre-clinical research. METHODS: To evaluate the impact of ATRX loss of function (LoF) in neuroblastoma, we utilized CRISPR-Cas9 gene editing to generate neuroblastoma cell lines isogenic for ATRX. We used these and other models to identify therapeutically exploitable synthetic lethal vulnerabilities associated with ATRX LoF. FINDINGS: In isogenic cell lines, we found that ATRX inactivation results in increased DNA damage, homologous recombination repair (HRR) defects and impaired replication fork processivity. In keeping with this, high-throughput compound screening showed selective sensitivity in ATRX mutant cells to multiple PARP inhibitors and the ATM inhibitor KU60019. ATRX mutant cells also showed selective sensitivity to the DNA damaging agents, sapacitabine and irinotecan. HRR deficiency was also seen in the ATRX deleted CHLA-90 cell line, and significant sensitivity demonstrated to olaparib/irinotecan combination therapy in all ATRX LoF models. In-vivo sensitivity to olaparib/irinotecan was seen in ATRX mutant but not wild-type xenografts. Finally, sustained responses to olaparib/irinotecan therapy were seen in an ATRX deleted neuroblastoma patient derived xenograft. INTERPRETATION: ATRX LoF results in specific DNA damage repair defects that can be therapeutically exploited. In ATRX LoF models, preclinical sensitivity is demonstrated to olaparib and irinotecan, a combination that can be rapidly translated into the clinic. FUNDING: This work was supported by Christopher's Smile, Neuroblastoma UK, Cancer Research UK, and the Royal Marsden Hospital NIHR BRC.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Neuroblastoma/genética , Proteína Nuclear Ligada ao X/genética , Animais , Antineoplásicos/uso terapêutico , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Modelos Animais de Doenças , Edição de Genes , Técnicas de Inativação de Genes , Humanos , Imuno-Histoquímica , Camundongos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Blood ; 136(10): 1155-1160, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32573723

RESUMO

Hematological and solid cancers catabolize the semiessential amino acid arginine to drive cell proliferation. However, the resulting low arginine microenvironment also impairs chimeric antigen receptor T cells (CAR-T) cell proliferation, limiting their efficacy in clinical trials against hematological and solid malignancies. T cells are susceptible to the low arginine microenvironment because of the low expression of the arginine resynthesis enzymes argininosuccinate synthase (ASS) and ornithine transcarbamylase (OTC). We demonstrate that T cells can be reengineered to express functional ASS or OTC enzymes, in concert with different chimeric antigen receptors. Enzyme modifications increase CAR-T cell proliferation, with no loss of CAR cytotoxicity or increased exhaustion. In vivo, enzyme-modified CAR-T cells lead to enhanced clearance of leukemia or solid tumor burden, providing the first metabolic modification to enhance CAR-T cell therapies.


Assuntos
Arginina/metabolismo , Argininossuccinato Sintase/metabolismo , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Neuroblastoma/terapia , Ornitina Carbamoiltransferase/metabolismo , Linfócitos T/transplante , Animais , Apoptose , Argininossuccinato Sintase/genética , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Engenharia Metabólica/métodos , Camundongos , Camundongos Nus , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ornitina Carbamoiltransferase/genética , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mycoses ; 63(9): 993-1001, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32506716

RESUMO

BACKGROUND: Dermatophytoses are the most frequent fungal infections worldwide and there have been described clinical resistance to the commonly used antifungals. Clioquinol is an antimicrobial that had the oral formulations withdrawn from the market in the 70s due to the report of neurotoxicity and recently has been considered as an effective alternative for the treatment of dermatophytosis. OBJECTIVES: To evaluate the effect of the double and triple association between clioquinol with terbinafine and ciclopirox on clinical isolates of dermatophytes. The cytotoxicity of these associations on human leukocytes was also verified. METHODS: Checkerboard method was used to evaluate the interaction between antifungal agents. Time-kill assay was used to verify fungicidal action and evaluate the combination with greater effect for TRU47 isolate. Cell viability was assessed by loss of integrity of the leukocyte membrane in order to verify the toxicity. RESULTS: Synergistic interaction was observed in 42% of isolates when terbinafine was associated with clioquinol and in 50% of isolates when ciclopirox was associated with clioquinol. The triple association resulted in synergistic interaction for 75% of the isolates. Clioquinol + terbinafine and triple combination were more effective for TRU47 isolate, and the combinations exhibited a time-dependent fungicidal effect. Furthermore, the results of cell viability demonstrated that clioquinol and terbinafine combination is not cytotoxic to human leukocytes. CONCLUSIONS: Clioquinol in combination with antifungals in the treatment of dermatophytosis can be a therapeutic strategy to overcome problems related to resistance, action spectrum and toxicity of the antifungal drugs used in the clinic.


Assuntos
Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Ciclopirox/farmacologia , Clioquinol/farmacologia , Fungos/efeitos dos fármacos , Terbinafina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Fungos/classificação , Humanos , Leucócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tinha/tratamento farmacológico
18.
Hum Mol Genet ; 29(6): 980-989, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32011699

RESUMO

A non-synonymous mtDNA mutation, m.3395A > G, which changes tyrosine in position 30 to cysteine in p.MT-ND1, was found in several patients with a wide range of clinical phenotypes such as deafness, diabetes and cerebellar syndrome but no Leber's hereditary optic neuropathy. Although this mutation has already been described, its pathogenicity has not been demonstrated. Here, it was found isolated for the first time, allowing a study to investigate its pathogenicity. To do so, we constructed cybrid cell lines and carried out a functional study to assess the possible consequences of the mutation on mitochondrial bioenergetics. Results obtained demonstrated that this mutation causes an important dysfunction of the mitochondrial respiratory chain with a decrease in both activity and quantity of complex I due to a diminution of p.MT-ND1 quantity. However, no subcomplexes were found in cybrids carrying the mutation, indicating that the quality of the complex I assembly is not affected. Moreover, based on the crystal structure of p.MT-ND1 and the data found in the literature, we propose a hypothesis for the mechanism of the degradation of p.MT-ND1. Our study provides new insights into the pathophysiology of mitochondrial diseases and in particular of MT-ND1 mutations.


Assuntos
DNA Mitocondrial/genética , Surdez/classificação , Surdez/patologia , Mitocôndrias/patologia , Mutação , NADH Desidrogenase/genética , Adolescente , Adulto , Criança , Pré-Escolar , DNA Mitocondrial/análise , Surdez/genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética
19.
Cancer Res ; 79(20): 5382-5393, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31405846

RESUMO

Neuroblastoma is a pediatric cancer that is frequently metastatic and resistant to conventional treatment. In part, a lack of natively metastatic, chemoresistant in vivo models has limited our insight into the development of aggressive disease. The Th-MYCN genetically engineered mouse model develops rapidly progressive chemosensitive neuroblastoma and lacks clinically relevant metastases. To study tumor progression in a context more reflective of clinical therapy, we delivered multicycle treatment with cyclophosphamide to Th-MYCN mice, individualizing therapy using MRI, to generate the Th-MYCN CPM32 model. These mice developed chemoresistance and spontaneous bone marrow metastases. Tumors exhibited an altered immune microenvironment with increased stroma and tumor-associated fibroblasts. Analysis of copy number aberrations revealed genomic changes characteristic of human MYCN-amplified neuroblastoma, specifically copy number gains at mouse chromosome 11, syntenic with gains on human chromosome 17q. RNA sequencing revealed enriched expression of genes associated with 17q gain and upregulation of genes associated with high-risk neuroblastoma, such as the cell-cycle regulator cyclin B1-interacting protein 1 (Ccnb1ip1) and thymidine kinase (TK1). The antiapoptotic, prometastatic JAK-STAT3 pathway was activated in chemoresistant tumors, and treatment with the JAK1/JAK2 inhibitor CYT387 reduced progression of chemoresistant tumors and increased survival. Our results highlight that under treatment conditions that mimic chemotherapy in human patients, Th-MYCN mice develop genomic, microenvironmental, and clinical features reminiscent of human chemorefractory disease. The Th-MYCN CPM32 model therefore is a useful tool to dissect in detail mechanisms that drive metastasis and chemoresistance, and highlights dysregulation of signaling pathways such as JAK-STAT3 that could be targeted to improve treatment of aggressive disease. SIGNIFICANCE: An in vivo mouse model of high-risk treatment-resistant neuroblastoma exhibits changes in the tumor microenvironment, widespread metastases, and sensitivity to JAK1/2 inhibition.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Genes myc , Metástase Neoplásica/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Criança , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Modelos Animais de Doenças , Progressão da Doença , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinases/antagonistas & inibidores , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc/genética , Metástase Neoplásica/diagnóstico por imagem , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/genética , Neuroblastoma/patologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Transdução de Sinais , Sintenia , Carga Tumoral , Microambiente Tumoral
20.
Drug Chem Toxicol ; 42(5): 509-518, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29644883

RESUMO

Degradation kinetics of oral anticoagulant rivaroxaban (RIV) was assessed in acid and alkaline media and while exposed to UVC radiation. Among all stress conditions tested, kinetic degradation process was better described by a zero-order model. A stability indicating method was validated for the analysis of the anticoagulant RIV in tablets by high-performance liquid chromatography. Robustness was evaluated with a two-level Plackett-Burman experimental design. The effect of acute exposition of the human hepatoblastoma HepG2 cell line to RIV stressed samples (100 and 500 µM) was assessed through in vitro toxicity tests. MTT reduction, neutral red uptake, mitochondrial membrane potential, and low molecular weight DNA diffusion assays were employed for cytotoxicity evaluation (5×104 cells/well). The genotoxic potential was assessed by comet assay (2×104 cells/well). Acute toxicity to HepG2 cells was assessed after 24 h incubation with sample solutions, for each test. A direct relationship between the increased amount of alkaline degradation products and higher cytotoxic potential was found. Results obtained by viability assay investigations support the concerns on risks associated with acute toxicity and genotoxicity of pharmaceutical samples containing degradation products as impurities.


Assuntos
Anticoagulantes/toxicidade , Dano ao DNA , Rivaroxabana/toxicidade , Anticoagulantes/efeitos da radiação , Técnicas de Cultura de Células , Ensaio Cometa , Estabilidade de Medicamentos , Células Hep G2 , Humanos , Hidrólise , Cinética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Rivaroxabana/efeitos da radiação , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...